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The nonlinear equations that describe transport in inhomogeneous media cannot 
be obtained by a straightforward extension of the known phenomenological 
equations for homogeneous media. One cannot therefore assert a priori that the 
Onsager reciprocity relations remain valid. Previously the correct equations 
have been obtained for three special models using kinetic theory. It is here 
shown that in these models the Onsager relations do indeed hold, provided that 
they are formulated with care. 
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1. ONSAGER RELATIONS FOR DISCRETE SYSTEMS 

The Onsager relations (1~ appear in their conceptually simplest form when 
they are applied to the transport  of matter  and energy between two vessels 
I and II. Either vessel contains a gas in equilibrium and the two temperatures 
and chemical potentials must be sufficiently close to each other for the rate 
of transport  to be linear in their difference. The transport equations then 
have the form 

~=Z L~X~ (1) 
k 

The cq denote the transported quantities, in this case energy c~ o and mass 
cq. More precisely, they are the excess of energy and mass contained in 
vessel I over and above its rightful share in the overall equilibrium of both 
vessels. Hence the total entropy 

s(~) = s ' (~) + s " ( - ~ )  

has a maximum at c<i = 0. 
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1020 Van Kampen 

Apart from the conserved extensive quantities :~i one defines for each 
vessel the corresponding intensive quantities 

OS I 0 S  11 
~ = ~-~ ' ~ - 0 ~  ( 2 )  

The thermodynamic forces or affinities X~ are defined as ~ - ~ [ 1 ,  or rather 
by the linear terms thereof: 

Xi=~j / ~2S1 ~2SII ~ ~ ~2S 

The derivatives are taken at ~ =  0. In our case of one gas in two vessels 
one has for each vessel 

1 / 2  

~0=~, ~ = - ~  (3) 
1 

# is the chemical potential. Hence 

= = * - - A T  Xo = A T2 , X 1 = A T ' T 2 

where A denotes the difference between the vessels I and II. 

For  our purpose it is necessary to include, as an additional feature, a 
given external potential field V, which is constant inside each vessel, but 
may differ between them. Again this difference A V must be small enough 
to be treated only in linear approximation. For d-dimensional ideal gases 
one then has in each vessel 

d 
# =  - ~  Tlog  T +  Tlog n +  V (4) 

where n is the density. As is well known, Boltzmann's constant equals 
unity. 

The Onsager relations state Lik= Lk,. The transport coefficients Lik 
are in general functions of the intensive quantities ~, but thanks to the 
linear approximation it is not necessary to specify whether these are the 
of the one vessel or of the other, or for instance the mean. This is one 
reason why the restriction to the linear approximation is indispensable. 
Without it the right-hand side of (1) would have to be replaced by some 
function of the state variables of both vessels, 

�9 I H 
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It is not known how a generalization of Onsager's relation for this case 
could be formulated. 2 

2. ONSAGER RELATIONS FOR EXTENDED SYSTEMS 

It is easy to extend the consideration of the previous section to a chain 
of vessels I, II, I I I  ..... in which every two successive ones are linked according 
to (1). In each vessel the ~i vary due to transport to both the preceding 
vessel and the succeeding one. It is convenient to regard these two terms 
as the flows Ji through each of the links. The Lik of each link depend on 
the ~, for which one may take the value of either vessel because the ~ vary 
little between two successive ones. However, the values of ~ along the 
whole chain may vary considerably. As a consequence the local values of 
~" may also vary considerably in the course of the time evolution. If initially 
one end of the chain is much hotter than the other, the colder end will heat 
up, so that ~o = 1/T cannot be treated as a constant. Hence the Lik are no 
longer constant and their dependence on the evolving ~(t) must be taken 
seriously. The chain of equations (1) constitute therefore a set of nonlinear 
differential equations. 

To summarize, the flows J~ are still proportional to the local differences 
A.~ of the ~, but the proportionality factors Lik(~) vary in the course of time 
through their dependence on the global variations of the ~ in the extended 
system. 

It is not necessary that the L~k of the successive links are all the same 
function of the local ~. Their dependence on ~ may change along the chain, 
which means that the system is inhomogeneous. This has nothing to do 
with the linearity or nonlinearity of the evolution equations. 

This chain of vessels may seem contrived, but it describes precisely 
what happens in a continuous medium. Consider a one-dimensional pipe 
containing a fluid, which is locally in equilibrium. Let cq(x) denote the 
various conserved quantities per unit length and J , (x)  their flows along the 
pipe. The intensive variables ~ are defined as in (2) through the local 
entropy density s(x)  by 

8s ~ 82s 

This relation involves only equilibrium properties. Transport is described 
by the flows J~(x); they are proportional to the differences of the ~ in 
adjacent elements 

d~k (6) 
J+(x) = ~ Lik[~(x))] dx 

k 

2A previous attempt (2) was unsuccessful, because on second thought it appeared much more 
restricted than originally realized and presumably applies exclusively to a Knudsen gas. 



1022 Van Kampen 

Hence the evolution of the cq is given by 

(~i(X)- dJi(x ) ~ d d~ 
dx - ~ L~k(~) dx (7) 

Together with the linear relations (5), this is a closed set of nonlinear 
equations. 

The extension to three dimensions is merely a matter of notation, but 
it is not needed for our purpose. Moreover, we restrict ourselves to the 
simple fluid, having only an energy flow J0 and a mass flow J1. According 
to (3), the flow equations (6) take the form 

d 1 d - p  
J~176176 L~ dx T 

d 1 d - #  
Jl = Lx~ r-b LlX dx T 

If the fluid consists of noninteracting particles, each with d degrees of 
freedom, one may use (4) to express # in terms of the density n. One then 
gets equations of the more familiar form 

dT 
Jo = - A  ~ x -  

_C  dT_  
J l =  dx 

dn n dV~ 
D - '~x+-~x)  

in which the phenomenological coefficients A, B, C, D are given by 

A = -- +-~5 Lol, B -  n 

L~o (d V) LH 
C = ~ -  ~ - ~ + ~  Ll l ,  D = - - n  

(8) 

In terms of these coefficients the Onsager relation Lol = Llo reads 

2 d V) nD (9) n B = T  C+(-~T+ 

3. WHY IS THERE A PROBLEM? 

The equation (7) for the particle density is 

8n 8J 1 8 F 8n D 
- = - - L D ~ x + ~ W ( x ) n + C T ' ( x )  

8t 8x 8x d (lo) 
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where the primes denote derivatives. This is only one of two coupled 
equations, but suppose that by some external means the temperature T(x) 
at each point x is kept fixed. Then (10) represents a generalized diffusion 
equation for the particle density n(x) alone. The coefficients depend 
on x through T(x) and may have an additional x dependence for 
inhomogeneous systems. 

The problem of diffusion in an inhomogeneous medium with inhomo- 
geneous temperature has been studied by a number of authors, mainly in 
connection with semiconductors. (3'4) It gives rise to some interesting 
phenomena/5'6) The reason why it is a problem is the following. The 
familiar phenomenological derivation used above yields a transport equation 
(10) in which the transport coefficients are the same ones as occur in the 
linear transport equations. The only reason why they depend on x is that 
the linear transport coefficients have to be taken at the local values of the 
thermodynamic variables T(x), #(x). The assumption of local equilibrium 
is indispensable for deriving (10). However, this assumption is dubious, 
because strict local equilibrium is incompatible with transport. As a 
consequence the phenomenological approach is not precise enough to find 
the correct form of the transport equations. There is no unique prescription 
for relating the coefficients in the nonlinear equations of inhomogeneous 
systems to the familiar coefficients known from measurements in 
homogeneous systems. Various similar, but not identical, equations seem 
equally plausible. ~7) 

To clarify the problem, a number of kinetic models have been 
investigated.(3.6 10) They gave rise to generalized diffusion equations, which 
could not be guessed phenomenologically. It is therefore also not clear 
a priori that in these cases the Onsager relations survive. The purpose of 
the present article is to verify that they do for the three kinetic models for 
which the diffusion equation has been derived previouslyJ 6'9'1~ 

In each case the particles diffuse independently, so that our present 
density n(x, t) may be identified with the probability density P(x, t) in the 
previous treatments. On identifying the diffusion equation for P with the 
present phenomenological equation (10), we obtain the explicit form of D 
and C for each of the three models. In order to verify the Onsager relation, 
it is necessary to compute the energy flow Jo as well. These computations 
are relegated to appendices, because they are somewhat involved and rely 
heavily on previous publications. The result will be that in each case 
Onsager is obeyed. 

For practical use we cast the condition (9) in yet another form. The 
energy flow Jo often appears in the form 

dT Jo=~J~+~,~ (11) 
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where (p and ~ are functions of n and T. The factor (p may be regarded as 
the average energy carried by each transferred particle. One then has 
B =  ~oD and the Onsager relation (9) becomes 

(~o - ( d / 2 ) T -  V)D = (T2/n)C (12) 

4. F IRST M O D E L :  L A N D A U E R ' S  PIPE 

A Knudsen gas is enclosed in a thin pipe (8) of radius ~. The wall is 
kept at a fixed temperature T(x), where x is the coordinate along the pipe. 
Molecules impinging on the wall are returned with the Maxwell distribution 
corresponding to the local T(x). There is also a potential field V(x). It has 
been proved (9) that to first order in e the density n(x, t) obeys a diffusion 
equation; the diffusion flow is 

J1 = - 3(2z@/2 ~xx Tt/2n + V'n 

Comparison with (8) shows that, omitting the numeral prefactor, 

D = T 1/2, C = �89 

The energy flow is computed in Appendix A, with the result 

4e dT 
J o = ( V +  2T)J1 3"2~'1/~t ) Tl/Zn 

Thus (11) applies with qo= V+2T.  Hence it is convenient to verify the 
Onsager relation in the form (12). For the present model it reduces to 

(V+ 2 T - ( 3 / 2 ) T -  V)T1/2 = (T2/n) lsn T-1,,2 

which is manifestly satisfied. 

5. S E C O N D  M O D E L :  B R O W N I A N  PARTICLE 

A heavy particle is embedded in a fluid, which is responsible for a 
friction force and a random Langevin force. The joint probability distribu- 
tion R(x, v) of its position and velocity obeys the Kramers equation (11) 

~t - v-gTx + V'(x)  ~v ~,(x) vR + r ( x )  77v (13) 

We have taken one dimension; V(x) is an external field. T(x) is the local 
temperature of the fluid and 7(x) is proportional to its density. We allow 
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7 to depend on x, so that not only the temperature, but also the system 
itself may be inhomogeneous. Recently an extension of (13) has been given 
which includes a thermophoretic force, ~ but I have not been able to 
verify the Onsager relation for that case. 

Kramers' equation determines the evolution of the distribution in 
phase space. In the limit of large 7, however, the velocity distribution is 
practically a Maxwellian, corresponding to the local temperature T(x). As 
a consequence, the spatial density n(x, t) obeys an equation by itself from 
which the velocity has been eliminated. It can be obtained in the same way 
as for constant 7 and T. t1!'13) The diffusion flow is then found to be (6) 

1 [ ~  T(x)n+V'(x)n] (14) 
& -  7(x) 

This has the form (8) with 

T(x)  n(x) 
D(x)  = 7(x) '  C(x) = 7(x) 

The energy flow is computed in Appendix B, with the result 

J0 = r + v  Jl-27T  

3 That shows that (p = s T +  V and the Onsager relation (12) takes the form 

1 
T + V - ~ T - V  7 n y 

which is satisfied. 

6. TH IRD MODEL:  T R A N S P O R T  BY HOPPING 

A particle moves in a one-dimensional medium containing traps in the 
form of potential pits of depth ~. The particle resides in a trap until it 
happens to collect from the heat motion of the medium the escape energy 
~. For a particle trapped at x' the probability per unit time to escape is 

c exp[ - q~/T(x')] (16) 

where T(x') is the local temperature of the medium. It then travels until it 
is caught by another trap; the traveling time is negligible compared to the 
time spent inside traps. The density of traps is O~(x), where f2 serves as a 
parameter to scale up the density and thereby reduce the average length of 
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the hops. The probability for the traveling particle to be caught in a trap 
between x and x + dx is 

~ a ( x )  dx 

where ~ is the probability to get stuck on passing a trap. 
When there is an external potential field V(x) the same excitation 

probability (16) is still valid for a hop in the direction of lower V. In the 
direction of increasing V, however, the probability per second for a 
particle, trapped at x', to undergo an excitation that allows it to travel to 
x is 

c exp{ - [4  + V ( x ) -  V(x')]/T(x')} 

This defines our hopping model for transfer in the presence of an external 
field and an inhomogeneous temperature; the medium itself is inhomogeneous 
because a depends on x. The model need not be realized in nature; all that 
matters is that it could exist--that is, that it does not violate any physical 
laws. 

It has been shown (1~ that for large /2 the transport of particles is 
described in first approximation by a diffusion equation. The particle flow is 

5 - +  e -| (17) 

The energy flow is computed in Appendix C, with the result 

Jo = VJ1 (18) 

In order to confront these equations with Onsager we have to develop 
the thermodynamics of particles hopping around in a medium. First, they 
have no kinetic energy, but a potential energy V ( x ) -  q~ per particle at x. 
The internal energy per unit volume is 

u(x) = I V ( x ) -  4 ]  n(x) + Uo(X) 

where Uo(X) is the energy density of the static medium. A particle has no 
other freedom than the choice of a site among the f2a(x) traps in each unit 
volume; hence each trap is occupied with probability n(x)/g2~(x) and the 
entropy per unit volume is 

n(x) 
s(x) = -n(x)  log ~ + So(X) 
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So refers to the medium, so that T dso= du o. Standard thermodynamics 
now readily yields 

f /  

p =  Tlog ~ +  V - r  

This replaces (4). One now has 

d 1 / d  n ldV'~  
J, : [ L ~ o - ( V -  qS)LH] ~xx~--LH ~xxlOg ~ + T ~ x )  

On the other hand, it has been shown (1~ that for large f2 the transport of 
particles is described in lowest order by a diffusion equation. The particle 
flow is 

2c / 1 d ,~/~ n n e l f  d V )  

Comparison of both expressions shows that, omitting 
prefactor, 

n n 

L11= ~ e r Llo=~sVe r 

the numerical 

It follows from (18) that Lol = VLll and this is, indeed, equal to L~o. 
Hence Onsager is again obeyed. 

APPENDIX  A 

In cylindrical coordinates x, ep (0 <~ p <~ 1) the azimuth disappears 
because of symmetry. Let the velocity component along the x axis be u, in 
the radial direction p, and in the tangential direction p~c. For the probability 
density in the one-particle phase space I write (9) 

(gp)-2 F(x, p; u, p, •; t) 

The spatial density is 

The particle flow is 

1 cx~ 

.d..d F (19) 
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and the energy flow 
1 oo 

Jo(x, 0=fo dp f o~ [l(u2 + p2 + p2r v]ududp dtc F 

In the limit e ~ 0 the distribution becomes the local Maxwell distribution 

F (~ = 2(2~T)-3/2 p2 e (~2+ p:+p2~2)/Zrn(x) 

To 
method for eliminating fast variables (14) is 

eF(~) = _ e ~ o  l y l  F(~ 

The operators ~o and L~I are 

~o = - p  -p~2 + 2 ~  

0 ~ 
~1 = - .  ~ + v'(x) G 

obtain the flows one needs the next order, which according to the 

(20) 

To evaluate (20), we first notice 

(c~ V') 
~q~lF~~ = - ~x +--T uF(~ 

Since ~o does not involve x, one now has to determine 5 ~ o l u F  ~~ - 
G(x, p; u, p, ~) by solving the equation ~oG=uF(~  A somewhat subtle 
argument involving the boundary conditions gives 

G _  _ m U ,021s __ p2 + p2K2 [PP + (p2 q_ p4K2)l/2"]F(o) 

Substitution in (19) gives 

J1 = - e  ~x + - T  dp -oo p2 q_ p2t~2 
@ dK 

f 
oo 

X u2F (~ du 
--cO 

f O V ' \ l f f  fm~p2-J-(1--p2)'~2] 1/2 

x e (p2 + 22)/2T dp d~. n(x) 
(0 .q_vt~g(T) I/2 

= -~ Yx r J 3 ~ nlx) 
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This is the old result. (9~ For  the energy flow we now find 

V, I] / /~  V ' )  1 oo 
J o :  Jlq-2~xq- T fo dP f-oo (bl2"~-P2-~p2K2)GbldlddpdK 

The term u 2 under the integral differs from the expression for Jx merely by 
this extra factor u 2, which is easily seen to contribute 3 T. Hence 

j o = (  V 3 e / c3 V"~ yx+u 

x dp (p2 @ p2tr _ p4/s @ dx u2F (0) du 
oo -oo 

The integral can again be evaluated to give 

fo * 
l~r lp2dp _~ (p2+p2x2-p%:2)l/2e (P2+p2~2)/2Tdpdp'n 3(2~z) 1/--------~T3/2n 

Collecting results, one obtains 

= ( V + 2T)  J~ 

which was used in Section 4. 

3(2rc) 1/2 ~x + --T T3/2n 

4e T~/2 n dT 
3(27Z) 1/2 dx 

A P P E N D I X  B 

In order to find a solution of (13) for large 7 one utilizes again the 
method for eliminating fast variables. In ref. 6 it was found that the first 
two orders are 

1 R(x, v, t) = e-~:/2T(x) f(X) + ~ g(x, t) 

1 Iv ~ f dT f f d V  f d T  df)]} 
~(X) T2 dx + V ~-T dx +-T-~x +-~x 

f is an arbitrary function of x and we do not need to know g(x, t). 
Integrating on v, one sees 

n(x, t)= [27zT(x)] '/2 I f ( x ) +  (_9(7 l)] (21) 

822/63/5-6-15 
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The particle flow is 

Jl(X, t) = f vR(x, v, t) dv 

l (2rcT)l /2(fV'+~fT'+ Tf') 
7 

With the aid of (21) this reduces to (14). The energy flow can be computed 
in the same way, 

Jo(x, t) = f (1/) 2 -~- V )  v R ( x ,  o, t) dv 

= VJ1 _ ~1  (2zr T) 1/2(3fTV'+I---~fTT'+3T2f ') 

With the aid of (21) it reduces to (15). 

A P P E N D I X  C 

Suppose V'(x)>O. The flow of particles consists of particles going 
from right to left and therefore downhill, and particles going to the right 
and therefore uphill. Each particle starts at a point x' and ends up in x. To 
describe the first contribution, take x < x'. The probability per unit time for 
a particle at x' to jump to x is 

W(xlx')=c{exp[-f l(x ')~]} ~f2G(x)exp ~(x") (22) 

where fl(x)= 1/T(x). For the second contribution one has x > x' and 

W(xlx') = c exp{ -//(x')[-~b + V(x)-  V(x')] } 

x c ~ ( x )  exp -c~f2 , ~(x") dx" (23) 

The flow of particles past a given point x o is 

g J l ( X o )  = - -  dx' dx W(xlx') n(x') 
0 

fxo f) + dx' dx W(xlx')n(x') 
-- 0 

(24) 
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In the first integral, substitute (22), introduce the integration variables 
r, r' by setting x' = Xo + r'/Q, x = Xo - r/Q, and expand in l/Q" 

f:~ ;; ( )( ) ere dr' dre  ~ 1 - - 6 f l ' q 5  a - - ~ 0 - '  e -c"r(r+r') 
Q 

x 1 - ~ a '  2Q ] n + - 6 n '  (25) 

Here the argument of all functions is Xo. The result is 

( n,) Ce~,~ n /~'~ n a'  n + ~  (26) 
~'2 ~ O~2~r~ 0.2 ~2~e" 2 0.3 

The second integral of (24) involves the transition probability (23) 
rather than (22). As a result there appears a new factor in (25), viz. 

fi V' . ( r+r ' )  1 - -  6 

Accordingly, one obtains for the flow of particles moving to the right 

+ - 6 e  -~e ~q-O~2~0- 2 2 +c~2Qa~ ~2~0-2 (27) 

The net result is 

,oC,, J1 = O~2Q-'"~ e - ~  -if5 a dx 

This is the same as (17): we have rederived the result of ref. 10 in a different 
manner. 

To compute the energy flow, we note that a particle excited at x' and 
hopping to x < x'  carries the energy V(x').  Hence the energy flow represented 
by the particles that hop to the left is 

f) - dx' dx m ( x l x ' ) n ( x ' )  V(x ')  
o 

As a consequence, one obtains (25) supplemented with a new factor 

r ! 

V(Xo) +-6 V'(xo) 
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That  has the effect on (26) that it is multiplied with V(xo)  and, moreover,  
a new term is added 

c _ ~  n 
o~2f22 e --~ V ' ( x o )  (28) 

A particle, however, that  hops from x'  to x > x '  has collected the 
energy V(x) .  Hence the particles moving to the right contribute to the 
energy flow at Xo, 

+ fxo dx, i f dx 
- - o o  0 

Again it has the effect of multiplying (27) with the factor V(xo )  and adding 
a new term 

r n 
+ - -  e - ~  - -  V ' ( x o )  ~2~r~2 G2 

This cancels the contr ibut ion (28), so that the total energy flow is precisely 
equal to the particle flow times V(x0),as announced in (18). 

It may  be objected that  a particle that is excited out of its pit does not 
acquire the exact amoun t  of energy needed, but may have any amount  
larger than this threshold value. The average excess energy is known from 
the barometr ic  formula to be (d/2)T. One thus finds, rather than (18), 

d T) J1 (29) Jo = ( V + ~  

However,  one then also has to add to /~ a kinetic energy term as in (4). 
With these two modifications one finds again that Onsager is obeyed. 
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